Evolutionary Multitasking Across Multi and Single-Objective Formulations for Improved Problem Solving
نویسندگان
چکیده
Traditionally, single-objective and multi-objective optimization have only considered a single problem in one run. However, the notion of evolutionary multitasking, which aims at solving multiple optimization problems simultaneously, has recently emerged in Evolutionary Computation (EC). It is inspired by the implicit parallelism of population-based search, which attempts to take advantage of implicit genetic transfer in a multitasking environment. According to optimization literature, transforming a single-objective optimization (SOO) problem into a multi-objective optimization (MOO) problem has often been found to remove local optima. Motivated by the aforementioned idea and the concept of multitasking, in this paper, we introduce a new strategy for tackling complex multi-modal problems. In particular, we solve the original (or target) SOO task together with an artificially formulated MOO task in a multitask setting. Therein, the MOO task is expected to provide a useful inductive bias to the search progress of the target SOO task by leveraging on the transferable knowledge shared between them, thereby helping overcome local optima and effectively guiding the population towards more promising regions of the search space.
منابع مشابه
A Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملPresenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.
Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملSolving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
متن کاملNew Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)
Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016